Fiji Islands Weather Summary February 2004
 Rainfall Outlook till May 2004

FIJI METEOROLOGICAL SERVICE
 In Brief

February was considerably wetter and in some cases warmer especially at night than January. From the end of the first week there were frequent periods of rainfall and occasional thunderstorms in the late afternoon especially about the interior and western parts of the main islands. Most of the country received either average or above rainfall except Savusavu Airport, Monasavu and Vunisea which received below average.

Heavy afternoon rainfall in the Western Division from the 6-14th caused flooding in the Qeleloa, Nadi, Navula and Saru, Lautoka and at Toge and Balevutu, Ba areas. Strong and gusty winds also caused crop damage in the Western Division. The change in weather in recent weeks after a long period of below average rainfall in the Northern Division also seems to have led to a dengue outbreak in the

Weather Patterns

During the first five days of the month, a ridge of high pressure dominated the weather over the country bringing in fine conditions over most places. The moist easterlies eventually settled in and on the $6^{\text {th }}$, a weak trough developed over the group causing heavy afternoon showers and thunderstorms about the interior and western parts of the main islands. Nadi Airport reported 127.5 mm on the $6^{\text {th }}$ between 2-9p.m. Trade showers continued about the eastern parts of the main islands and afternoon showers dominated the western parts for the next few days.

On $10^{\text {th }}$, an active trough to the north of the Group drifted south, and brought heavy rain and thunderstorms across the country on the 11th. A series of disturbances formed within this trough but did not develop into a cyclone, it however caused strong and gusty northwesterly winds. A tropical depression was analysed within the trough to the west of Nadi on the $12^{\text {th }}$ which later moved southwards. Associated strong northwesterly winds and heavy rain dominated the Group till the 15th. The trough then moved further westwards and a weak ridge developed over the Group on the $15^{\text {th }}$ and brought settled weather by $16^{\text {th }}$ February.
Another trough developed to the east of the group on the $17^{\text {th }}$ bringing further rain about the eastern parts of the main islands. The trough

Northern Division.

Day-time and night-time air temperatures were average to above average. Two new day-time temperature record were set this month at Vatukoula (new low of $25.1^{\circ} \mathrm{C}$) and Vunisea (new high of $34.4^{\circ} \mathrm{C}$). Relative humidity varied around average across the country.

Total sunshine hours were around average at all the recording stations.

Rainfall in Fiji Islands in the next three months is expected to vary around average. The amount of rainfall received at this time of the year is very much dependant on the number of and effect tropical disturbances (cyclones, depressions etc.) have on the Fiji Group.
moved across the country on the $18^{\text {th }}$ and caused scattered rain till the $20^{\text {th }}$ before moving away to the west. As it did, a tropical depression along it, briefly enhancing the associated northerly winds and showers over Fiji. The depression eventually intensified in a tropical cyclone on the 23rd and was subsequently named TC Ivy whilst located 330 miles northwest of Nadi and moving steadily away from Fiji. Ivy initially moved towards the northwest while intensifying rapidly, before turning southward to pass over the central parts of Vanuatu on the 26th. The cyclone attained a peak intensity of 90 knots on the 26th, while located 30 miles north of Port Vila.

The trough remained to the west while another trough extended over the eastern parts of the Group. Afternoons showers continued about the mains islands till the $28^{\text {th }}$ and on the $29^{\text {th }}$ a ridge extended over the group from the southeast, bringing fine weather.

In the case of Rotuma a trough of low pressure remained slow moving in the vicinity of the island from the $9^{\text {th }}$ to the $13^{\text {th }}$ and from the $17^{\text {th }}$ to the $29^{\text {th }}$ causing some significant rainfall.

TABLE 1: Rainfall from December to February 2004

Station	Actual Rainfall (mm)	Has rainfall in the last three months been below average, average or above average?	$\begin{gathered} \frac{\text { No. of Rain }}{\text { days in December }} \\ \text { (\% of total rain) } \end{gathered}$	$\frac{\text { No. of Rain }}{\text { days in January }} \text { (\% of total rain) }$	$\begin{gathered} \begin{array}{c} \text { No. of Rain } \\ \text { days in February } \end{array} \\ \text { (\% of total rain) } \end{gathered}$
Penang Mill	722.0	Below Average	20 (41)	13 (8)	21 (51)
Monasavu Dam	1381.6	Below Average	31 (59)	16 (13)	23 (28)
Vatukoula Mine	871.2	Average	14 (29)	9 (10)	19 (61)
Rarawai Mill, Ba	957.9	Average	18 (44)	8 (6)	18 (50)
Yasawa-I-Rara	-	-	-	-	-
Viwa Is.	449.0	Average	10 (19)	5 (3)	17 (78)
Lautoka Mill(Research)	585.3	Below Average	18 (32)	10 (6)	18 (62)
Nadi Airport	848.4	Average	22 (25)	9 (15)	18 (60)
Nacocolevu, Sigatoka	643.3	Average	13 (36)	7 (11)	21 (53)
Tokotoko, Navua	935.7	Average	27 (46)	15 (22)	20 (32)
Laucala Bay, Suva	702.7	Below Average	24 (47)	20 (16)	24 (37)
Nausori Airport	714.0	Below Average	26 (43)	16 (15)	23 (42)
Nabouwalu	656.6	Below Average	31 (48)	15 (12)	26 (40)
Labasa Airport	600.5	Below Average	19 (30)	10 (15)	15 (55)
Savusavu Airport	468.8	Below Average	23 (37)	9 (27)	14 (36)
Udu Point	1011.9	Above Average	25 (32)	14 (16)	19 (52)
Matei Airport	913.2	Average	27 (55)	20 (13)	19 (32)
Lakeba Is.	510.5	Average	14 (41)	15 (14)	16 (45)
Matuku Is.	-	-	-	-	-
Ono-I-Lau Is.	232.1	Below Average	6 (13)	7 (11)	12 (76)
Vunisea, Kadavu	382.3	Below Average	19 (52)	17 (10)	17 (38)
Rotuma	765.5	Below Average	22 (37)	16 (20)	16 (43)

Rainfall in the last three months

Rainfall in February

Most of the country received either average or above rainfall except Savusavu Airport, Monasavu and Vunisea which received below average rainfall ($<80 \%$ of normal). Udu Point received well above average rainfall (211%). In the Western Division rainfall ranged from (74-175\%), Northern Division ($70-211 \%$), Eastern Division ($62-101 \%$) and Central Division (99-115\%) of normal.

Rainfall in the 3-months from December to February

The Rainfall forecast for the period December to February in the November Fiji Islands Weather Summary was for rainfall vary around average. The confidence level of the forecast was moderate.

Of the twenty sites that reported in time for this summary, eleven sites reported below average, eight average and one above average.

A number of sites especially those in the Northern Division may still be in a rainfall deficiency situation however rainfall has improved considerably in the last month. Below average rainfall in the last three months was generally received in the northern parts of the Western Division, parts of the Central Division, western and central Vanua Levu, Vunisea, Ono-I-Lau and Rotuma.

Nadi Airport - Temperature \& Rainfall Records for the last 13 Month
(Feb 2003 - Feb 2004)

Figure B

Laucala BaylSuva - Temperature \& Rainfall Records for the last 13 Mont|
(Feb 2003 - Feb 2004)

Figure C

Labasa Airfield - Temperature \& Rainfall Records for the last 13 Months
(Feb 2003-Feb 2004)

Climate in February

Mean Day-time and Night-time Air Temperatures and Relative Humidity at 0900hrs.

Day-time temperatures were generally average to above av- recorded at Vatukoula and Savusavu/Labasa Airfields erage across the country. The greatest positive departures which both recorded 1.0 and $0.9^{\circ} \mathrm{C}$ respectively above norwere recorded at Ono-I-Lau and Nabouwalu which re- mal. The greatest negative departures were recorded at corded 1.6 and $1.1^{\circ} \mathrm{C}$ respectively above normal. There Penang Mill and Udu Point which recorded 0.7 and $0.2^{\circ} \mathrm{C}$ were only two negative departures that were recorded at respectively below normal.
Vatukoula and Nadi Airport, 0.5 and $0.3^{\circ} \mathrm{C}$ below normal.
A new high temperature was recorded at Vunisea and a Relative Humidity (RH) at 0900hrs varied around average new low at Vatukoula. Night-time temperatures were generally average to above est negative departures were recorded at Rarawai Mill and average. The greatest positive departures from normal were Labasa Airfield (-4\%).

Soil Moisture and Runoffs

Soil moisture conditions varied considerably throughout ple to dry during the first week then moderate to excessive the month. The second half of the month was much wetter during the remaining three weeks.
then the first.
Rotuma recorded ample to moderate during the first week In the Western Division conditions generally ranged from and excessive to ample conditions the remaining three moderate to dry during the first week of the month then weeks.
moderate to excessive during the remaining three weeks.
Significant runoffs were recorded at Udu Point (375.5mm), In the Central Division conditions were moderate to ample Vatukoula (358.0 mm), Nadi Airport (344.4 mm), Rarawai during the first week then excessive to ample during the re- Mill (320.3mm) and Monasavu (276.5mm).
maining three weeks.
In the Northern and Eastern Divisions conditions were am-

Sunshine, Radiation \& Winds

Total sunshine hours were average to above average. Nadi Monthly average wind speed was above average at Nadi Airport recorded 81%, Laucala Bay/Suva, 97%, Naco- Airport and Nabouwalu and below average at Rotuma, colevu 85\% and Rotuma 91% of normal.

Nausori Airport, Lakeba, Vunisea and Ono-I-Lau.
Global Solar Radiation (average per day) recorded at Nadi Airport was $16.3 \mathrm{MJ} / \mathrm{M}^{2}$.
Records set in February 2004

Element	$\underline{\text { Station }}$	$\frac{\text { Observed }}{\text { (record) }}$	$\underline{\text { On }}$	$\underline{\text { Rank }}$	$\frac{\text { Previous }}{\text { (record) }}$	$\underline{\text { Year }}$	$\frac{\text { Records }}{\text { Began }}$
Max Temp	Vatukoula	$25.1^{\circ} \mathrm{C}$	13 th	New Low	$27.5^{\circ} \mathrm{C}$	1996	1984
Max Temp	Vunisea	$34.4^{\circ} \mathrm{C}$	5 th	New High	$34.1^{\circ} \mathrm{C}$	1997	1947

November to April 2003/04 Tropical Cyclone Season

The South West Pacific Tropical Cyclone Season officially began on 1st November and will continue till 30th April 2004.

The chances of cyclone activity in the Fiji region this season are slightly higher than normal based on the prediction that Neutral conditions will continue through the season. The average number of cyclones that have affected Fiji (including pre-season events) since 1969/70 is between 1 and 2. However, there have been as many as six events such as in 1996/97.

Historical records of tropical cyclones affecting Fiji since the 1969/70 show that 13 cyclones have affected Fiji in March with four of them causing severe damage. The years were 1971, 79, 80, 83, 84, 85 (2 events), 89, 92, 94, 97 (3 events).

There have been only two cyclones (TC Heta and Ivy), develop in Fiji's RSMC region this season.

Prior to and during a cyclone information on the event and regular updates will be provided on the Fiji Met Service http://www.met.gov.fi website, via Poll fax and the media.

Southern Oscillation Index vs 5-Month Means

(January 1997 - February 2004)

ENSO status and Rainfall Outlook to April 2004

The Southern Oscillation Index (SOI) for February was 8.6 (January was -11.7) with the five-month running mean of 0 centred on December (November was -1) (Figure D).

The current El Niño-Southern Oscillation status remains neutral. The surface of the equatorial Pacific is generally slightly warmer than average having cooled marginally in most areas over the past fortnight.
The Kelvin wave of sub-surface warming, noted in previous weeks, has dissipated with little or no effect on eastern Pacific temperatures. In fact, subsurface temperatures are cooler than average in the central and eastern Pacific.
The SOI has see-sawed dramatically over the past three months as air pressure has alternately risen and fallen across northern Australia and the central Pacific. The Bureau's Ocean forecast model indicates about a 20 to 25% chance of El Niño by winter or spring. This is about the same as the natural or historical frequency of occurrence. 7 of 12 computer models surveyed by the Bureau indicate a persistence of neutral conditions to July 2004, with the other five indicating a possible El Niño. A majority of models are also in favour of neutral conditions in October 2004.
The March to June period is known as the "predictability barrier" and model skill is at its lowest when predicting across this span of months. Users should therefore be cautious when interpreting model forecasts for the middle of 2004. March to June is also the key time of year for El Niño events to be aided or triggered into development by westerly wind bursts (weakening or reversal of the Trade Winds).
(The ENSO Update and SOI are provided by of the National Climate Centre, Australian Bureau of Meteorology and can be found at http://www.bom.gov.au)

FMS Rainfall Prediction Model: This model is based on schemes, which have run successfully at the Australian Bureau of Meteorology's National Climate Centre. These a statistical scheme based on the relationship between SOI and subsequent three-month rainfall totals. In each case the probability of low, medium or high rainfall in the oncoming three-month period is provided. The scheme uses the SOI averaged over the most recent three-month period. The reliability of the model is high during the wet season (Nov-Mar) but decreases during the dry season (MaySept) and during the transitions months, April and October.

Below average rainfall is predicted for the whole of Viti Levu and Vanua Levu except for Suva, Nausori Airport and Udu Point. Below average is also predicted for the Eastern Division and Rotuma except Ono-I-Lau and Matuku. For the remaining areas near average or equal chances of below, average or above average rainfall is predicted (Figure E).

Australian Rainman: This is a Rainfall Prediction Model was created from joint efforts between Australia Meteorological and Agricultural Agencies. The model incorporates the use of SOI to test its effects on the probability of rainfall in upcoming months. It shows the relationship between ENSO (El Niño - Southern Oscillation) events and rainfall. Due to public demand this model is currently used to present the probability of receiving rainfall in the coming individual months over a three-month period. Please note that the reliability of forecast for one month is lower than for a combined three month period.

The model predicts a $36-68 \%$ chance (depending on location) of receiving average rainfall across Fiji in next three months (Table. 2).

Outlook for March to May 2004:

Based on the model predictions and 'neutral' conditions, Fiji's rainfall is expected to vary considerably around average in the next three months (some parts of the country may receive below average rainfall and others above average rainfall).

The amount of rainfall received at this time of the year is very much dependant on the number of and effect tropical disturbances (cyclones, depressions etc.) have on the Fiji Group.

NOTE: The confidence level in the outlook is 'low' due to the outlook period including the transition period from Wet to Dry Season.

Preliminary Climatological Summary for February 2004

PRELIMINARY CLIMATOLOGICAL DATA FOR MONTH 2, 2004: SUMMARY FOR DAYS 1 TO 29

	RAINFALL					AIR TEMPERATURES								SUNSHINE TOTAL	
	TOTAL		RAIN DAYS	MAX.		AVERAGE DAILY				EXTREME			ON		
				FALL		MAX.	\#	MIN.	\#	MAX.		MIN.			
	MM	\%		MM	ON	C	C	C	C	C	ON	C		HRS	\%
NADI AIRPORT	5101	175	18	128	6	31.3	-0.3	23.7	0.8	33.6	5	22.1	9	153	81
SUVA/LAUCALA BAY	262	99	24	45	12	31.3	0.1	24.1	0.1	33.2	23	21.6	14	171	97
NACOCOLEVU	3401	145	21	61	19	31.7	0.2	23.2	0.6	33.8	28	21.2	4	138	85
ROTUMA	3291	101	16	75	12	31.3	0.7	25.0	0.3	33.3	7	22.8	25	146	91
VIWA	3491	144	17	98	13	31.8	0.5	25.6	0.3	34.6	6	23.5	14		
UDU POINT	526	211	19	136	3	30.8	-0.0	24.3	-0.2	32.4	10	21.5	14		
LABASA AIRFIELD	333	98	15	138	20	32.1	0.5	23.3	0.9	34.5	6	20.2	2		
NABOUWALU	260	94	26	65	13	31.5	1.1	24.9	0.5	33.3	15	22.3	14		
SAVUSAVU AIRFIELD	171	70	14	46	12	31.1	0.3	24.6	0.9	34.4	16	21.5	14		
MATEI AIRFIELD	2941	103		75	7	30.7	0.3	24.3	0.1	32.5	5	23.0	4		
*YASAWA-I-RARA	Fault	ty	AWS												
VATUKOULA	5381	139	19	139	13	31.3	-0.5	23.1	1.0	34.3	7	21.0	14		
MONASAVU	392	74	23	71	13	26.0	0.3	19.8	0.5	28.3	24	16.1	17		
NAUSORI AIRPORT	301	112	23	52	12	31.1	0.3	23.3	-0.0	33.4	5	20.1	2		
NAVUA/TOKOTOKO	2931	115	20	47	8	30.1	0.1	23.1	0.1	32.0	5	21.0	3		
LAKEBA	228	101		46	26	31.2	0.7	24.6	0.5	32.7	19	21.1	3		
*MATUKU	Fault	ty	AWS												
VUNISEA	144	62	15	28	13	30.8	0.4	24.3	0.7	34.4	5	22.1	3		
ONO-I-LAU	177	91	12	38	13	31.4	1.6	25.4	0.8	33.0	23	20.9	15		
BA/RARAWAI MILL	4731	136	18	135	13	32.1	-0.0	22.5	0.2	34.0	4	20.5	3		
LAUTOKA AES	366	122	18	123	13	31.4	0.3	24.4	0.5	33.5	4	22.8	14		
PENANG MILL	371	111	21	114	13	31.2	0.7	23.2	-0.7	33.0	4	21.5	14		

PE WATER BALANCE(MM) TEMPERATURE (C)HUMIDITY WIND SUN RAD MAX. LAST DEF NO RO NO DLY DRY WET RH\% VP \%OF MJ/
.1MM DS ON DS DYS DYS MEAN (AVERAGE AT 9AM) KT POS SQ.M
NADI AIRPORT
SUVA/LAUCALA BAY
NACOCOLEVU
ROTUMA
VIWA
UDU POINT
LABASA AIRFIELD
NABOUWALU
SAVUSAVU AIRFIELD
MATEI AIRFIELD
*YASAWA-I-RARA
VATUKOULA
MONASAVU
NAUSORI AIRPORT
NAVUA/TOKOTOKO
LAKEBA
*MATUKU
VUNISEA
ONO-I-LAU
BA/RARAWAI MILL
LAUTOKA AES
PENANG MILL

| 51 | 44 | 5 | 4 | 0 | 0 | 344 | 13 | 27.5 | 28.5 | 25.5 | 78 | 30.3 | 6.0 | 42 | 16.3 | |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 48 | 48 | 7 | 10 | 0 | 0 | 113 | 5 | 27.7 | 27.6 | 25.6 | 85 | 31.4 | | 47 | u / s | |
| 49 | 50 | 4 | 5 | 0 | 0 | 172 | 13 | 27.5 | 27.6 | 25.4 | 84 | 30.8 | | 42 | 20 | |
| 50 | 57 | 8 | 4 | 0 | 0 | 167 | 8 | 28.2 | 28.9 | 25.9 | 78 | 31.1 | 2.7 | 42 | 19 | |
| 53 | 75 | 4 | 14 | 6 | 2 | 150 | 5 | 28.7 | 29.1 | 26.2 | 79 | 31.8 | | | | |
| 48 | 25 | 2 | 5 | 0 | 0 | 376 | 11 | 27.5 | 28.2 | 25.9 | 83 | 31.5 | | | | |
| 49 | 63 | 7 | 6 | 0 | 0 | 155 | 2 | 27.7 | 28.5 | 25.4 | 78 | 30.1 | | | | |
| 48 | 22 | 4 | 4 | 0 | 0 | 120 | 11 | 28.2 | 28.6 | 25.9 | 80 | 31.4 | 2.3 | | | |
| 48 | 74 | 11 | 10 | 0 | 0 | 6 | 1 | 27.9 | 28.6 | 25.6 | 78 | 30.5 | | | | |
| 48 | 20 | 23 | 7 | 0 | 0 | 157 | 9 | 27.5 | 28.8 | 26.2 | 81 | 31.9 | | | | |
| Faulty | AWS | | | | | | | | | | | | | | | |
| 51 | 75 | 9 | 8 | 2 | 1 | 358 | 7 | 27.2 | 28.2 | 24.9 | 77 | 29.0 | | | | |
| 38 | 24 | 5 | 0 | 0 | 0 | 277 | 15 | 22.9 | 22.6 | 21.2 | 88 | 24.0 | | | | |
| 47 | 38 | 5 | 5 | 0 | 0 | 153 | 13 | 27.2 | 27.7 | 25.6 | 84 | 31.2 | 3.8 | | | |
| 46 | 26 | 4 | 16 | 0 | 0 | 167 | 14 | 26.6 | 27.7 | 25.2 | 82 | 30.3 | | | | |
| 48 | 69 | 9 | 9 | 0 | 0 | 60 | 5 | 27.9 | 29.0 | 25.9 | 78 | 31.1 | | | | |
| Faulty | AWS | | | | | | | | | | | | | | | |
| 48 | 75 | 7 | 34 | 11 | 4 | 0 | 0 | 27.5 | 28.7 | 25.8 | 79 | 30.9 | 3.4 | | | |
| 48 | 75 | 1 | 50 | 38 | 9 | 50 | 3 | 28.4 | 28.7 | 26.1 | 81 | 31.9 | 1.8 | | | |
| 52 | 31 | 5 | 5 | 0 | 0 | 320 | 9 | 27.3 | 28.5 | 25.2 | 77 | 29.6 | | | | |
| 51 | 59 | 9 | 5 | 0 | 0 | 189 | 8 | 27.9 | 28.7 | 25.3 | 76 | 29.7 | | | | |
| 51 | 55 | 6 | 5 | 0 | 0 | 202 | 10 | 27.2 | 27.0 | 25.3 | 87 | 30.9 | | | | |

DS IS SOIL MOISTURE DEFICIT,LIMIT 75 MM; RO IS WATER SURPLUS (INDEX OF RUNOFF) DEF (AE-PE) IS EVAPOTRANSPIRATION DEFICIT (INDEX OF IRRIGATION WATER NEEDED. PE IS LONG TERM MEAN PENMAN POTENTIAL EVAPOTRANSPIRATION (CALCULATED OR ESTIMATED). MEAN TEMPERATURE IS (MAX+MIN)/2; WIND IS MEAN SPEED AT $06,12,18,24$ HOURS.
\$: SOLAR RADIATION CALCULATED FROM SUNSHINE DURATION. \# :DEPARTURE FROM NORMAL.

+ :NUMBER OF DAYS WITH 0.1 MM OR MORE RAIN. * :PERCENT OF NORMAL.

[^0]Three Month Rainfall Outlook Probabilities for March to May 2004
The forecast probabilities are
FIGURE E: Three Month Forecast for Selected Stations in Fiji using the Fiji presented as Meteorological Services Rainfall Prediction Model

DRY/NORMAL/WET

Please note that the probabilities are listed beside of the corresponding station marker or dot.

FIGURE F: Reference Map of selected Climate/Rainfall sites in Fiji

'DRY' range refers to rainfall less than 33rd percentile.
'NORMAL' (average) range refers to rainfall between 33rd and 67 th percentiles.
'WET' range refers to rainfall above 67th percentile.

Reference Table for 33rd and 67th Percentile

Station	33\% (mm)	67\% (mm)
Western Division		
Dobuilevu	692	903
Vatukoula	513	826
Rarawai	519	784
Penang	591	873
Lautoka	506	691
Nadi	501	665
Lomawai	449	660
Nacocolevu	445	646
Olosara	480	613
Yasawa	458	643
Central Division	1064	1258
Navua	1004	
Suva	829	1066
Nausori	803	1048

Eastern Division

Levuka	710	951
Lakeba	538	722
Matuku	483	641
Ono-I-Lau	425	663
Vunisea	594	752
Northern Division	810	
Labasa Mill	556	847
Seaqaqa	606	897
Nabouwalu	669	833
Savusavu	601	811
Udu Point	590	987
Matei	709	1041
Rotuma	840	8

TABLE 3: Monthly Rainfall Outlook Probabilities for March to May 2004

	March 2004		April 2004		May 2004		Mar to May 2004 combined	
Station Name	Average*	Probability ${ }^{\text {\# }}$						
Western Division								
Dobuilevu	429	41	286	43	130	42	845	36
Vatukoula	382	23	221	68	78	46	681	53
Rarawai	365	53	207	71	95	33	667	51
Penang	425	45	269	53	161	32	855	36
Lautoka	308	46	187	70	84	56	579	56
Nadi	341	32	160	75	89	41	590	46
Lomawai	294	52	169	57	90	44	553	51
Olosara	258	36	166	69	99	53	523	68
Nacocolevu	275	43	155	70	85	58	515	59
Yasawa-I-Rara	276	27	209	51	85	46	570	56
Central Division								
Navua - Tamanoa	413	59	448	14	287	55	1148	51
Suva	374	45	366	18	270	41	1010	54
Nausori	382	46	356	19	248	48	986	42
Eastern Division								
Lakeba	293	27	206	26	136	50	635	53
Ono-I-Lau	253	20	157	78	103	54	513	49
Northern Division								
Korowiri	378	28	251	68	116	46	745	42
Seaqaqa	392	15	269	62	125	43	786	43
Nabouwalu	335	48	300	53	171	51	806	45
Savusavu	283	33	261	44	196	35	740	46
Udu Point	320	30	276	29	167	38	763	40
Rotuma	369	42	294	65	296	54	959	60

Please note that the above figures should be used with caution, as there is some degree of uncertainty associated with them, and particularly the reliability of the model is low during the transition months and the dry season.

The probabilities in the three-month combined column are not an average of the three individual months. The model in this case has been re-run for three combined months. There is a higher degree of skill association with predicting rainfall for three combined months compared to three individual months.

[^1]
[^0]: Note: This summary is prepared for rapid dissemination as soon as possible following the end of the month. The quantitative data are obtained daily on the phone or radiotelephone from a network of climate stations reporting 9 am observations; these data must be treated as provisional. Water balance calculations are approximate and are intended for guidance purposes only. Also, FMS does not guarantee accuracy and reliability of the forecast information presented in this summary but the Department should be sought for expert advice, any clarification or additional information. Any person wishing to re-print any information provided in this summary must seek permission from the Director of Meteorology.

[^1]: * 'Long-term Average' for the 30 year period from 1971-2000.
 \# Probability of expecting at least normal rainfall.

